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Summary

The general requirements, in particular the statistical-mechanical founda-
tions, of a dynamical theory of chromatography have been investigated.
A general chromatographic model, representing a special form of the
master-equation formalism of nonequilibrium statistical mechanics, has
been established. The physical and mathematical nature of dispersion
coefficients have been analyzed in some detail and the relation between
these parameters and those measured in chromatography are briefly
discussed.

Theories of chromatography may be divided into two main cate-
gories; those based on the conservation of mass and those following
the stochastic (or random-walk) approach. Recently it has become
increasingly apparent that these theories suffer from a number of
deficiencies. First, the conservation-of-mass approach entails the
solution of partial differential equations involving mathematical
difficulties which limit its application to practical situations (I).
Second, current stochastic theories yield inexact results (2) and lack
a well-founded and common basis. Third, it is, in both cases, often
difficult to clearly interpret the physical significance of the mathe-
matical operations and results.

The present paper presents a critical evaluation of the general
requirements of a dynamic theory of chromatography and, in par-
ticular, examines the statistical-mechanical foundations of such a
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theory. A general chromatographic model, representing a special
form of the master-equation formalism of nonequilibrium statis-
tical mechanics, is established and the essential equivalence
between the two traditional approaches is demonstrated. The
physical and mathematical nature of dispersion coefficients is
analyzed in some detail and the connection between these param-
eters and those measured in chromatography is briefly discussed.

The general model combines the basic simplicity of the random-
walk approach with the mathematical rigor of nonequilibrium
theory. The purpose, at this stage, has been to formulate a general
theoretical framework from which specific situations of practical
interest can be dealt with in detail; for this reason the formulation
presented below is necessarily relatively abstract.

THE THEORY OF PREDICTION

The general requirements of a theory of prediction are most
conveniently formulated in abstract vector space. A system is
defined in terms of a set of quantities A;, A,, . . . , A, which is
considered as forming a basis for the description space. Any pos-
sible state of the system is then represented by a vector A’ =
(Ai, AL, . . ., A}) or, equivalently, by a single point in this space,
and all points are assumed to be connected arc-wise. Change in
the system is defined as change in the position of the representa-
tive point in the space. In order to describe change, a time param-
eter, t, is introduced and it is assumed that time intervals, At, are
well defined relative to some independent periodic reference
system,

The fundamental structure of the dynamical formalism is deter-
mined by requiring the theory to conform to two requirements:
that of determinism and that of a 1:1 correspondence between
theory and experiment. Determinism implies that, given the state
of the system at an initial time #,, the theory must be able to predict
the state of the system uniquely at any subsequent time t. Consider
the chromatographic system as an assemblage of N particles acted
upon by various forces. If the whole experimental arrangement
is isolated, it is well known that the dynamical state of the system
may be represented by a single point in the phase space spanned
by the 6N generalized coordinates (q;, . . . , gsv) and momenta
(p1> - . - » pan) of the particles. In this space determinism is satis-
fied by considering the motion as being generated by means of
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the Hamilton function H(q;, p;) via the canonical equations of
motion.

oH oH

G =g G=L2...M W

However, although these equations are correct in the classical
limit, this approach is useless in practice because even the three-
particle problem has until now defied solution in closed form. On
the other hand, such a solution would contain much more informa-
tion than is necessary for chromatographic purposes. To remedy
this it is necessary to specify the requirements of chromatographic
measurement space and to map phase space onto a description
space which is in a 1:1 correspondence with the measurement
space. Alternatively, one could conceivably reverse the process,
i.e., decide first on the requirements and then adapt the measure-
ments accordingly. In the light of the present state of chromato-
graphic experimental technique the first of these approaches is
preferred here. For convenience, the discussion below will be
restricted to column chromatography; with a few minor changes
in notation it also applies to other experimental arrangements.

In general a chromatographic detector measures the number of
solute molecules passing an axial plane (usually the column outlet)
per unit time. The measurement space is therefore essentially
unidimensional. The measured quantity can also be specified in
probabilistic terms by numerically equating the fraction of the total
number of molecules of the particular species per unit volume to
the probability f of finding an arbitrary representative molecule of
that species in the volume. This is a necessary requirement for a
1:1 correspondence, because it is assumed that the detector does
not distinguish between different molecules of the same chemical
species. The description space is therefore also unidimensional,
representing the longitudinal displacement of the representative
molecule from a fixed origin. The laws of motion in the phase plane
corresponding to this description space can now be formulated.

Consider, for example, the projected motion of the total system’s
representative point on a single (x;, p;) phase plane. The Hamilton
function generating the motion on this plane has the form H =
H(x;, p;, t), where the explicit time dependence results from the
coupling with the other degrees of freedom. It may be remarked
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in passing that it is this explicit time dependence which causes the
dynamical equations of chromatography to be time-irreversible
(3). Since the detector assigns equal weights to all molecules
located at x?, one should consider the simultaneous motion of all
particles located at x{ at a time t, on a representative (x;, p;) phase
plane. This construction may be thought of as the appropriate
ensemble for chromatography, analogous to the Gibbsian ensem-
bles for the total phase space.

The p! values of the particles will be distributed over a whole
range of values as a result of the difference in initial states of the
particles and difference in the explicit time dependence of the
appropriate Hamilton function. However, it is important to note
that this variation will be bounded as a result of the fact that the
representative point of the whole system is confined to move on
a single energy hypersurface. If the subsequent paths of these
molecules are therefore followed during a time interval, At, one
would find a situation such as that depicted in Fig. 1.

Pi
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Consider now that a mathematical net of net width Ax is drawn
over the column length. If the probability for a molecule to be in a
particular cell is defined as the number of points lying within that
cell divided by the total number of points, one obtains, at every
instant ¢, a probability distribution as in Fig. 2. Since all the points
in the phase plane move according to the deterministic laws of
classical mechanics, it is obvious that the probability distribu-
tion’s temporal evolution will also be governed by deterministic
equations. One may call this a dynamical theory of distributions
and proceed as follows to find a suitable formalism in which to
cast it.

It is evident from the above that the state of the system, at each
time t, can be represented by a vector f(t) = (fi(¢), fo(t), . . .,
(1)), where fi(t) is the probability per unit volume of finding a
particle in the ith cell. At a time At later, this vector will have
changed into f(t + At) under the action of the classical laws of
motion, which can be symbolically represented by an operator
Agp, that is,

ft + At) = Ay pf(2) 2)
To ensure determinism, this operator must be either explicitly

time-independent or its time dependence must be known. It can

f

FIG. 2
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be shown (4) that A,, can be represented by a matrix the elements
of which are defined as transition probabilities from cell i to cell j.
When At—0 Eq. (2) may be rewritten as (5)

df,
Yo s (aufi— Auf) ®

where A are now transition probabilities per unit time. Equation
(3) is a particular form of the master equation which has acquired
great prominence in recent studies on nonequilibrium statistical
mechanics (6-8). In the present context Eq. (3) is regarded as
expressing the requirement of determinism in the prediction of
the temporal change of the probability distribution.

If the transition probabilities A;; are known, Eq. (2) can be used
to simulate chromatographic processes on an electronic computer.
With an arbitrary input function f(0) at time ¢ = 0, the chromato-
gram at a time £ = n At is given by (9)

f(t) = A3, £0) (4)

where A%, is the nth power of the matrix A,,. This approach is
implicit in the work of Vink (10). Although the method suffers
from the disadvantage that it does not lead to analytical expressions,
it should, nevertheless, prove useful where the analytical approach,
as outlined below, becomes mathematically intractable, and it
should also provide a powerful means of assessing the validity of
analytical theories.

LIMITING FORMS OF THE MASTER EQUATION
APPLICABLE TO CHROMATOGRAPHY

In certain cases where the transition probabilities have simple
forms, the master equation may be recast into partial-differential-
equation form. Two of these forms are of special importance in
chromatography—those corresponding to convection and those
to dispersion. We find it convenient, initially, to develop the theory
in terms of parameters describing these processes; the transposi-
tion to chromatographically more convenient parameters will be
dealt with later.

Each term in the master equation represents either a positive
or negative contribution to the probability of the cell under con-
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sideration and is the product of two conditional probabilities, the
first, say f;, gives the chance of the particle being found in a unit
volume of the ith cell, the second A;; the probability that, if it is in
the cell i at the time ¢, it will be found in cell j at time ¢ + At. Con-
sider a net of net width Ax spanning the column. Then A; ;1. may
be defined as
Ax'

© Ax A (5)

A.l',.l‘+A.z‘ =A

where A, is a product of other relevant conditional probabilities
determined by the physical characteristics of the phenomenon
being described. Ax’ is the mean distance traveled in the +x
direction in time At' by the molecules situated in the x cell at
time ¢. Equation (5) may also be rewritten as

>

€

A.r,.r+A.r = Z; (6)

where At has the definite physical meaning of the mean time taken
by the particles in the x cell to traverse the net width Ax.

Convection

Consider a point x in the column with Ay z1a: = Az pze=A=2a
constant, and all other transition probabilities equal to zero (Fig. 3).

AI “AX, X Ax,x«mx

| 1 1
| i 1 ! 1
L] L ¥ ] I ] T
| | |
X-4X X X+4X
FIG. 3

The master equation for the x cell is then

o _

ot - A.t—'A.r,xf.t—Ar - A.r,.r+A.rf.1'

=— A Ax(fy — fo-ar)/Ax

—-ad )
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where Eq. (5) has been used and the limit Ax—0 has been taken.
@ is physically interpreted as the mean velocity of particles in the
x cell.

Diffusion

Let the transition probability scheme be as depicted in Fig. 4.
Ax is considered to be the distance between isotropic scattering
centers. The master equation then reduces to

af_ 2f1‘+A.l‘+f.l'— .l'_2f1'
at A(Ax) (Ax)Az (8)

It is now important to note that it is not permissible to take the
limit Ax—0 in Eq. (8) because Ax has a definite physical meaning,
viz., the distance between the scattering centers. If Ax < [, the
length of the column, Taylor’s theorem may, however, be used to
approximate

f.z-+A.r +f.l‘—A.1' - zf.t‘ _ ﬁ

(Ax)? T ox?
Equation (6) then becomes
W piaee
ot~ MAY 55 ©)

Since both A and Ax are constants, A(Ax)? may be equated to a con-
stant coeflicient, D, so that the final form is

of 9%

ot~ D oy (10)
The above transition-probability scheme corresponds to the clas-
sical random walk, so that Eq. (10) is the partial differential equa-
tion describing the random-walk process. Equation (10) is usually

[ - A | A |
i I 1
| A [ A |
| | I
l | 1 | 1 ] [l
T T T t
X-AX X X+AX

FIG. 4
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obtained by the application of conservation of mass and Fick’s
law of diffusion (11). Equation (8) has also been obtained in a
different context, but in an analogous manner as above, by Chan-
drasekhar (13) and Ree et al. (14).

The coefficient D is of considerable importance in chromatog-
raphy and may also be computed by considering the netto frac-
tional flux AJ of molecules through a cell boundary. From Fig. 4

this follows as

= A(Ax)? g—{

*f
=D Py (11)
D may therefore be computed either by means of Eqs. (10) or (11),
the latter being the starting point for the generalized nonequilib-
rium theory (12). The basic equivalence of the above theories is
therefore established, as they are merely different ways of ex-
pressing the information contained in the basic transition-prob-
ability scheme.
When both convection and diffusion are operative in the column
Egs. (5) and (8) may be combined to give

of ___of  of
F=—a+D7;

ox ax>

which is the Fokker-Planck diffusion equation with drift.

THE THEORY OF DISPERSION COEFFICIENTS

The derivation of the Fokker-Planck equation in the previous
section was based on a transition scheme which is unnecessarily
restrictive. It is the purpose of the present section to show that a
generalized diffusion coefficient, the dispersion coeflicient, may
be defined which, in addition to molecular diffusion, is also able
to describe the effects of more than one type of scattering center,
anisotropic scattering, and virtual scattering centers.

The motion of a representative particle in a single phase plane
is controlled by an explicitly time-dependent potential function
resulting from the direct or indirect interaction of the particle with
(1) the externally applied pressure gradient, (2) the walls of the
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column, (3) the column packing, (4) the stationary phase, and (5)
the other mobile particles. It is impossible to account exactly for
these interactions (this would involve solution of the complete
equations of motion), so we are forced to devise simplified models
of the processes involved.

It will be assumed that the effect of the pressure gradient and
the walls may be inferred from a knowledge of the column-wide
velocity distribution. This means that they directly contribute only
to the convective term as the mean axial velocity averaged over the
column cross section. The other effects manifest themselves as
contributions to the total dispersion coefficient. In the present
paper only an outline of some of the more general aspects concern-
ing the evaluation of these will be given; detailed calculations for
both open and packed tubular columns will be given elsewhere.

The Molecular Diffusion Coefficient (D))

Molecular diffusion results from the interaction of the repre-
sentative particle with the Maxwell-Boltzmann velocity distribu-
tion superimposed on the convective flow pattern, the reasonable
assumption being made that this equilibrium distribution is not
perturbed by the forces causing the convective flow. The mean
distance between scattering centers is identified with the mean
free path A, and since A = ¢ Af, where ¢ is the molecular speed
between collisions, the diffusion coefficient is given, from Eqs. (6),

(9), and (10) by
D,, = Acch (12)

where A, depends on the precise definition of ¢.

Superimposed Scattering Systems

It frequently happens (e.g., in packed columns) that more than
one system of periodically distributed scattering systems operate
simultaneously. Consider, for simplicity, two such systems with
periodicities Ax, and Ax, By writing down the master equation for
an x cell (Fig. 5) it is easily shown that

of _

2 =D+ Dy

o*f

e (13)
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X-5X, X+,

where D, = A((Ax,)* and D, = A,(Ax,)?, assuming that both Ax, and
Ax, are so small that Taylor’s expansion may be used. It is also
required that the total transition probability be written as the sum
of A, and A,. The feasibility of this procedure is a matter of investi-
gation for each specific situation.

Anisotropic Scattering

Consider the transition scheme depicted in Fig. 6. The master
equation for the x cell now reads

d
a{ If.r Ax + AZf.M—A.r lf.r - A2f.l' (14)

From Taylor’s theorem it follows that

1 92
Alfx—A.r [ r f 2 3{ Ax)? :l
82
Aefvse = Mol ot 5 f L ax+ 320 Ay (15)
when third- and higher-order terms are neglected. From (14) and
A 1 A2
I
Ay N
I ! I
1 ! 1 I | | |
1 : T | L : T
x-4%X X T+AX
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{15) we have
d d 82
T (= a0 b Ly, + Agaar 4

= (@ — ) L+ 40, + Dy L (16

This important result shows that anisotropic scattering results in
a drift term due to the difference in velocities and an effective
dispersion coeflicient equal to the mean of the two dispersion
coeflicients

D;=(Ax)*A;, and D, = (Ax)%A, (17)

However, it is not necessary to restrict the theory to second-
order terms. If the expansion (15) is extended to include third-
order terms, one finds

of _ .~ of Bzf PN
5’;—(1‘2_ )6 +%(D1+D2) +#S,— Sy 6 .3 (18)

with S; = A/(Ax)® = constant.

When the theory of isotropic scattering is similarly extended,
the coeflicient of 43f/3x? is found to be zero. This result implies
that the usual theories of chromatography, which only consider
second-order terms, may be inadequate for systems in which
anisotropic scattering occurs. The chromatographic significance
of these results is discussed below.

Virtual Scattering Centers

These arise as a result of coupling between different rate proc-
esses in the column. Examples of these are the coupling between
the longitudinal flow profile and lateral diffusion, and the interac-
tion between lateral diffusion and the exchange processes between
the stationary and mobile phases. All these processes are charac-
terized by a time which is the time taken by a representative
particle to experience the virtual scattering. These will be dis-
cussed elsewhere.
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INTERPRETATION OF THE CHROMATOGRAM PARAMETERS IN
TERMS OF THE DISTRIBUTION-FUNCTION PARAMETERS

In chromatography the chromatogram is usually described in
terms of parameters related to the first three moments m,, m,, and
m, of the distribution function. They are found by applying the

operator f " (x — %)" dx to the distribution function, where
+ oo
x= f xf dx
That is,
+w
my = f fdx (19)
+o0
m, =f (x—xfdx=0 (20)
+ oo
m2=f (x — £Pf dx @)

m, is, by definition of f, equal to unity. m, is the mean of the dis-
tribution and coincides with the origin in the above case, because
all distances are referred to #. m, is the variance and gives an indi-
cation of the bandwidth. It is customary (16) to express m, in terms
of the local plate height
dm,
dx
which is the increase of the variance per unit distance moved by
the mean of the distribution.

Consider now the more general equation governing the evolu-
tion of a chromatogram which was proposed in the previous
section:

H.= (22)

d d i 9
f—-agg-&-Da—fZ‘—S—f (23)

at x ox®
D and S are assumed constant. When use is made of the fact that
lim x — *o0 3"f/gx™ = 0 in the integration by parts, it can be proved

that

f: (x — 2" gxf dx = (—1)"m! 8 (24)
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where 8,, is the Kronecker delta. By operating on Eq. (23) with the

operator f " (x= 97 dx (n=0,1,2,3) and by using Eq. (24) we find
dre=o (25)
o (26)
dc’;? =2D (27)
s _6s (28)

Equation (25) expresses the conservation of mass, while Eq. (26)
shows that the distribution mean moves with a velocity 4, i.e.,
equal to the negative of the coeflicient of df/ax in Eq. (23). From
Egs. (26), (27), and (22) it follows that the local plate height is given
by
_dmy, dt _2D
Cdt d¥ @ (29)

Since my is a measure of the skewness of the peak, S is a measure
of the rate of increase in this skewness. This result is a generaliza-
tion of previous theories which predict a tendency toward a
gaussian distribution.

For the purpose of chromatography, the third-order partial dif-
ferential equation [Eq. (23)] may therefore be replaced by the
simple set of ordinary first-order differential equations (25) to (28).
These require the specification only of the moments of the initial
distribution for their complete solution.

The theory outlined above is strictly valid only when #@, D, and
S are constant. It may, however, be easily extended (17) to the case
where these parameters depend on x, provided their variation
within the peak width is negligible compared to the variation along
the length [ of the column.

When D and S are dependent on f (nonlinear chromatography)

H,

+o0

the operator f (x — %)* dx is not able to extract the desired

—@

chromatographic information directly from Eq. (23). It may ther.
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become necessary first to solve this equation for f before operating
on it with the moment generator. Alternatively, it might be possible
to construct an operator which will transform Eq. (23) into a form
from which the time dependence of the moments may be found
more easily.

CONCLUSIONS

The general equation describing the temporal change of the
solute distribution in a chromatographic column is the special
form, Eq. (3), of the master equation. When the transition prob-
abilities can be written in terms only of x and f, this equation re-
duces to a partial differential equation of the form

2. 3 4.
O U
X ax ax 0x
where the coefficients @, D, S, and T, etc., are functions of x, f, and
other column parameters. These coeflicients may all be calculated
in terms of transition probabilities, which, in turn, are found by
averaging the appropriate chromatographic ensemble.

The order to which Eq. (30) is considered significant is governed
by the amount of information required about the peak character-
istics. For instance, if retention times and bandwidths are the only
factors in which one is interested, third- and higher-order terms
may be neglected. However, if peak asymmetry is of importance,
it may become necessary to include third-order terms. This will,
however, depend on the relative magnitudes of the contributions
of S, the concentration dependence of D, and the influence of the
initial distribution to the peak skewness.
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