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SEPARATION SCIENCE, l(4). 443-458 (1966) 

A Stochastic Approach to Chromatographic 
Theory Based on the Master Equation 

K. DE CLERK, T. W. SMUTS, and VICTOR PRETORIUS 
CHROMATOGRAPHY RESEARCH UNIT OF THE SOUTH AFRICAN COUNCIL FOR 
SCIENTIFIC AND INDUSTRIAL RESEARCH, DEPARTMENT OF PHYSICAL AND 
THEORETICAL CHEMISTRY, UNIVERSITY OF PRETORIA, PRETORIA, 
REPUBLIC OF SOUTH AFRICA 

Summary 

The general requirements, in particular the statistical-mechanical founda- 
tions, of a dynaiiiical theory of chromatography have been investigated. 
A general chromatographic model, representing a special form of the 
master-equation formalism of nonequilibriuin statistical mechanics, has 
been established. The physical and mathematical nature of dispersion 
coefficients have been analyzed in some detail and the relation between 
these parameters and those measured in chromatography are briefly 
discussed. 

Theories of chromatography may be divided into two main cate- 
gories; those based on the conservation of mass and those following 
the stochastic (or random-walk) approach. Recently it has become 
increasingly apparent that these theories suffer from a number of 
deficiencies. First, the conservation-of-mass approach entails the 
solution of partial differential equations involving mathematical 
difficulties which limit its application to practical situations ( 1 ) .  
Second, current stochastic theories yield inexact results (2) and lack 
a well-founded and common basis. Third, it is, in both cases, often 
difficult to clearly interpret the physical significance of the mathe- 
matical operations and results. 

The present paper presents a critical evaluation of the general 
requirements of a dynamic theory of chromatography and, in par- 
ticular, examines the statistical-mechanical foundations of such a 
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444 K. DE CLERK, T. W. SMUTS, AND V. PRETORIUS 

theory. A general chromatographic model, representing a special 
form of the master-equation formalism of nonequilibrium statis- 
tical mechanics, is established and the essential equivalence 
between the two traditional approaches is demonstrated. The 
physical and mathematical nature of dispersion coefficients is 
analyzed in some detail and the connection between these param- 
eters and those measured in chromatography is briefly discussed. 

The general model combines the basic simplicity of the random- 
walk approach with the mathematical rigor of nonequilibrium 
theory. The purpose, at this stage, has been to formulate a general 
theoretical framework from which specific situations of practical 
interest can be dealt with in detail; for this reason the formulation 
presented below is necessarily relatively abstract. 

THE THEORY OF PREDICTION 

The general requirements of a theory of prediction are most 
conveniently formulated in abstract vector space. A system is 
defined in terms of a set of quantities A,, A*, . . . , A, which is 
considered as forming a basis for the description space. Any pos- 
sible state of the system is then represented by a vector A' e 
(A;, A:, . . . , Ah) or, equivalently, by a single point in this space, 
and all points are assumed to be connected arc-wise. Change in 
the system is defined as change in the position of the representa- 
tive point in the space. In order to describe change, a time param- 
eter, t ,  is introduced and it is assumed that time intervals, At, are 
well defined relative to some independent periodic reference 
system. 

The fundamental structure of the dynamical formalism is deter- 
mined by requiring the theory to conform to two requirements: 
that of determinism and that of a 1:l correspondence between 
theory and experiment. Determinism implies that, given the state 
of the system at an initial time to, the theory must be able to predict 
the state of the system uniquely at any subsequent time t .  Consider 
the chromatographic system as an assemblage of N particles acted 
upon by various forces. If the whole experimental arrangement 
is isolated, it is well known that the dynamical state of the system 
may be represented by a single point in the phase space spanned 
by the 6 N  generalized coordinates (ql, . . . , qSN) and momenta 
(p, . . . , p3N) of the particles. In this space determinism is satis- 
fied by considering the motion as being generated by means of 
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STOCHASTIC APPROACH TO CHROMATOGRAPHIC THEORY 445 

the Hamilton function H(qj, pj) via the canonical equations of 
motion. 

dH d H  h=- P --- 0’=1 ,2 , .  . . , 3 N )  
ap5 j -  a 4r 

However, although these equations are correct in the classical 
limit, this approach is useless in practice because even the three- 
particle problem has until now defied solution in closed form. On 
the other hand, such a solution would contain much more informa- 
tion than is necessary for chromatographic purposes. To remedy 
this it is necessary to specify the requirements of chromatographic 
measurement space and to map phase space onto a description 
space which is in a 1:l correspondence with the measurement 
space. Alternatively, one could conceivably reverse the process, 
i.e., decide first on the requirements and then adapt the measure- 
ments accordingly. In the light of the present state of chromato- 
graphic experimental technique the first of these approaches is 
preferred here. For convenience, the discussion below will be 
restricted to column chromatography; with a few minor changes 
in notation it also applies to other experimental arrangements. 

In general a chromatographic detector measures the number of 
solute molecules passing an axial plane (usually the column outlet) 
per unit time. The measurement space is therefore essentially 
unidimensional. The measured quantity can also be specified in 
probabilistic terms by numerically equating the fraction of the total 
number of molecules of the particular species per unit volume to 
the probability f of finding an arbitrary representative molecule of 
that species in the volume. This is a necessary requirement for a 
1 : 1 correspondence, because it is assumed that the detector does 
not distinguish between different molecules of the same chemical 
species. The description space is therefore also unidimensional, 
representing the longitudinal displacement of the representative 
molecule from a fixed origin. The laws of motion in the phase plane 
corresponding to this description space can now be formulated. 

Consider, for example, the projected motion of the total system’s 
representative point on a single (xj, pj) phase plane. The Hamilton 
function generating the motion on this plane has the fonn H = 
H(xj, pj, t ) ,  where the explicit time dependence results from the 
coupling with the other degrees of freedom. It may be remarked 
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446 K. D E  CLERK, T. W. SMUTS, A N D  V. PRETORIUS 

in passing that it is this explicit time dependence which causes the 
dynamical equations of chromatography to be time-irreversible 
(3) .  Since the detector assigns equal weights to all molecules 
located at xj’, one should consider the simultaneous motion of all 
particles located at xj’ at a time to on a representative (xj, pj) phase 
plane. This construction may be thought of as the appropriate 
ensemble for chromatography, analogous to the Gibbsian ensem- 
bles for the total phase space. 

The pp values of the particles will be distributed over a whole 
range of values as a result of the difference in initial states of the 
particles and difference in the explicit time dependence of the 
appropriate Hamilton function. However, it is important to note 
that this variation will be bounded as a result of the fact that the 
representative point of the whole system is confined to move on 
a single energy hypersurface. If the subsequent paths of these 
molecules are therefore followed during a time interval, At, one 
would find a situation such as that depicted in Fig. 1. 

I 
I 

I 
- - - - - - -O 

I 

I 
FIG. 1 
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STOCHASTIC APPROACH TO CHROMATOGRAPHIC THEORY 447 

Consider now that a mathematical net of net width Ax is drawn 
over the column length. If the probability for a niolecule to be in a 
particular cell is defined as the number of points lying within that 
cell divided by the total number of points, one obtains, at every 
instant t ,  a probability distribution as in Fig. 2. Since all the points 
in the phase plane move according to the deterministic laws of 
classical mechanics, it is obvious that the probability distribu- 
tion’s temporal evolution will also be governed by deterministic 
equations. One may call this a dynamical theory of distributions 
and proceed as follows to find a suitable formalism in which to 
cast it. 

It is evident from the above that the state of the system, at each 
time t ,  can be represented by a vector f(t) = (fi(t), fi(t), . . . , 
f , ( t)) ,  where J ( t )  is the probability per unit volume of finding a 
particle in the ith cell. At a time At later, this vector will have 
changed into f(t + At) under the action of the classical laws of 
motion, which can be symbolically represented by an operator 
A,,, that is, 

(2) 
To ensure determinism, this operator must be either explicitly 
time-independent or its time dependence must be known. It can 

f(t + At) = A,,ft) 

f 

FIG. 2 
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448 K. D E  CLERK, T. W. SMUTS, A N D  V. PRETORIUS 

be shown ( 4 )  that A,, can be represented by a matrix the elements 
of which are defined as transition probabilities from cell i to cellj. 
When At+O Eq. (2) may be rewritten as (5) 

where A,, are now transition probabilities per unit time. Equation 
(3) is a particular form of the master equation which has acquired 
great prominence in recent studies on nonequilibrium statistical 
mechanics (6-8). In the present context Eq. (3)  is regarded as 
expressing the requirement of determinism in the prediction of 
the temporal change of the probability distribution. 

If the transition probabilities Aij are known, Eq. (2) can be used 
to simulate chromatographic processes on an electronic computer. 
With an arbitrary input function f(0) at time t = 0, the chromato- 
gram at a time t = n At is given by (9) 

f(t) = A:, f(0) (4) 

where A:, is the nth power of the matrix no,. This approach is 
implicit in the work of Vink (10). Although the method suffers 
from the disadvantage that it does not lead to analytical expressions, 
it should, nevertheless, prove useful where the analytical approach, 
as outlined below, becomes mathematically intractable, and it 
should also provide a powerful means of assessing the validity of 
analytical theories. 

LIMITING FORMS OF THE MASTER EQUATION 
APPLICABLE TO CHROMATOGRAPHY 

In certain cases where the transition probabilities have simple 
forms, the master equation may be recast into partial-differential- 
equation form. Two of these forms are of special importance in 
chromatography-those corresponding to convection and those 
to dispersion. We find it convenient, initially, to develop the theory 
in terms of parameters describing these processes; the transposi- 
tion to chromatographically more convenient parameters will be 
dealt with later. 

Each term in the master equation represents either a positive 
or negative contribution to the probability of the cell under con- 
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STOCHASTIC APPROACH TO CHROMATOGRAPHIC THEORY 449 

sideration and is the product of two conditional probabilities, the 
first, say$, gives the chance of the particle being found in a unit 
volume of the ith cell, the second Aij  the probability that, if it is in 
the cell i at the time t ,  it will be found in cel l j  at time t + At .  Con- 
sider a net of net width A x  spanning the column. Then A x , x + A x  may 
be defined as 

A x '  
Ax At' ~ x , x + , x  = A, - ( 5 )  

where A, is a product of other relevant conditional probabilities 
determined by the physical characteristics of the phenomenon 
being described. hx' is the mean distance traveled in the +x 
direction in time At' by the molecules situated in the x cell at 
time t .  Equation (5 )  may also be rewritten as 

where dt has the definite physical meaning of the mean time taken 
by the particles in the x cell to traverse the net width A x .  

Convection 

Consider a point x in the column with A,,,+AX = Ax-Ax,x = A = a 
constant, and all other transition probabilities equal to zero (Fig. 3). 

Ax -bX,x Ax,xtAx 
I I I 

X h  x X X'+AX 

FIG. 3 

The master equation for the x cell is then 

af =- a- 
dX 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
5
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



450 K. DE CLERK, T. W. SMUTS, AND V. PRETORIUS 

where Eq. ( 5 )  has been used and the limit Ax+0 has been taken. 
ii is physically interpreted as the mean velocity of particles in the 
x cell. 

Diffusion 

Let the transition probability scheme be as depicted in Fig. 4. 
Ax is considered to be the distance between isotropic scattering 
centers. The master equation then reduces to 

It is now important to note that it is not permissible to take the 
limit Ax+O in Eq. (8) because Ax has a definite physical meaning, 
viz., the distance between the scattering centers. If Ax G 1, the 
length of the column, Taylor's theorem may, however, be used to 
approximate 

f x + A s  +fx-hx - 2 f X  - a2f -- 
(Ax)2 ax2 

Equation (6) then becomes 

'f'= -, a2f 
a t  ax- 

Since both A and Ax are constants, A ( A X ) ~  may be equated to a con- 
stant coefficient, D, so that the final form is 

The above transition-probability scheme corresponds to the clas- 
sical random walk, so that Eq. (10) is the partial differentia1 equa- 
tion describing the random-walk process. Equation (10) is usually 

I- A I h I  
I I I 

I A  I A 1  
I I I 

X - A  X X xtnx 
I 1 I I I I I 
I I I 1 

FIG. 4 
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STOCHASTIC APPROACH TO CHROMATOGRAPHIC THEORY 45 1 

obtained by the application of conservation of mass and Fick's 
law of diffusion (11). Equation (8) has also been obtained in a 
different context, but in an analogous manner as above, by Chan- 
drasekhar (13) and Ree et al. (14). 

The coefficient D is of considerable importance in chromatog- 
raphy and may also be computed by considering the netto frac- 
tional flux A] of molecules through a cell boundary. From Fig. 4 
this follows as 

A] = Af,+,, AX - Afz AX 

D may therefore be computed either by means of Eqs. (10) or (ll), 
the latter being the starting point for the generalized nonequilib- 
rium theory (12). The basic equivalence of the above theories is 
therefore established, as they are merely different ways of ex- 
pressing the information contained in the basic transition-prob- 
ability scheme. 

When both convection and diffusion are operative in the column 
Eqs. ( 5 )  and (8) may be combined to give 

which is the Fokker-Planck diffusion equation with drift. 

THE THEORY OF DISPERSION COEFFICIENTS 

The derivation of the Fokker-Planck equation in the previous 
section was based on a transition scheme which is unnecessarily 
restrictive. It is the purpose of the present section to show that a 
generalized diffusion coefficient, the dispersion coefficient, may 
be defined which, in addition to molecular diffusion, is also able 
to describe the effects of more than one type of scattering center, 
anisotropic scattering, and virtual scattering centers. 

The motion of a representative particle in a single phase plane 
is controlled by an explicitly time-dependent potential function 
resulting from the direct or indirect interaction of the particle with 
(1) the externally applied pressure gradient, (2) the walls of the 
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452 K. DE CLERK, T. W. SMUTS, AND V. PRETORIUS 

column, (3)  the column packing, (4) the stationary phase, and (5) 
the other mobile particles. I t  is impossible to account exactly for 
these interactions (this would involve solution of the complete 
equations of motion), so we are forced to devise simplified models 
of the processes involved. 

It will be assumed that tlie effect of the pressure gradient and 
the walls may be inferred from a knowledge of the column-wide 
velocity distribution. This means that they directly contribute only 
to the convective term as the mean axial velocity averaged over the 
column cross section. The other effects manifest themselves a s  
contributions to the total dispersion coefficient. In the present 
paper only an outline of some of the more general aspects concern- 
ing the evaluation of these will be given; detailed calculations for 
both open and packed tubular columns will be given elsewhere. 

The Molecular Diffusion Coefficient (Dm) 
Molecular diffiision results from the interaction of the repre- 

sentative particle with the Maxwell-Boltzmann velocity distribu- 
tion superimposed on the convective flow pattern, the reasonable 
assumption being made that this equilibrium distribution is not 
perturbed by tlie forces causing the convective flow. The mean 
distance between scattering centers is identified with the mean 
free path A, and since A = c AE, where c is the molecular speed 
between collisions, the diffiisioii coefficient is given, from Eqs. (6) ,  
(9), and (10) by 

D,,, = &cX (12) 

where A, depends on the precise definition of c ,  

Superimposed Scattering Systems 

It frequently happens (e.g., in packed columns) that more than 
one system of periodically distributed scattering systems operate 
simultaneously. Consider, for simplicity, two such systems with 
periodicities Axl and Axz. By writing down the master equation for 
an x cell (Fig. 5 )  it is easily shown that 
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X-AX2 
I I 

XtAXz 
I 

I I I I '  ' I  I I 
I I 

I 
I 

I I I 

I 

I I I I ) I I I  I 

x-AX, x X+AXI 
I I I 

FIG. 5 

where D ,  = Al(Ax,)2 and D, = &(AX$, assuming that both Ax, and 
Ax2 are so small that Taylor's expansion may be used. It is also 
required that the total transition probability be written as the sum 
of A, and A2. The feasibility of this procedure is a matter of investi- 
gation for each specific situation. 

Anisotropic Scattering 

equation for the x cell now reads 
Consider the transition scheme depicted in Fig. 6. The master 

(14) a f  
- = A*fx-*x + A , f X + * X  - AlfZ - A2fx a t  

From Taylor's theorem it follows that 

when third- and higher-order terms are neglected. From (14) and 

A 2  I A 2  

A I  I A l  
I I I 
I [  I I I 1 

I I 1  I I I 
I I I 

X-AS X X+AX 
FIG. 6 
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454 K. DE CLERK, T. W. SMUTS, A N D  V. PRETORIUS 

(15) we have 

This important result shows that anisotropic scattering results in 
a drift term due to the difference in velocities and an effective 
dispersion coefficient equal to the mean of the two dispersion 
coefficients 

D,  =  AX)^^, and D2 = ( A x ) ~ A ~  (17) 

However, it is not necessary to restrict the theory to second- 
order terms. If the expansion (15) is extended to include third- 
order terms, one finds 

with SI = = constant. 
When the theory of isotropic scattering is similarly extended, 

the coefficient of a3f/ax3 is found to be zero. This result implies 
that the usual theories of chromatography, which only consider 
second-order terms, may be inadequate for systems in which 
anisotropic scattering occurs. The chromatographic significance 
of these results is discussed below. 

Virtual Scattering Centers 

These arise as a result of coupling between different rate proc- 
esses in the column. Examples of these are the coupling between 
the longitudinal flow profile and lateral diffusion, and the interac- 
tion between lateral diffision and the exchange processes between 
the stationary and mobile phases. All these processes are charac- 
terized by a time which is the time taken by a representative 
particle to experience the virtual scattering. These will be dis- 
cussed elsewhere. 
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STOCHASTIC APPROACH TO CHROMATOGRAPHIC THEORY 455 

INTERPRETATION OF THE CHROMATOGRAM PARAMETERS IN 
TERMS OF THE DISTRIBUTION-FUNCTION PARAMETERS 

In chromatography the chromatogram is usually described in 
terms of parameters related to the first three moments m,, m,, and 
m2 of the distribution function. They are found by applying the 

operator 1-r (x - X)" dx to the distribution function, where 

That is, 

mo = 1-1 f dx 

mo is, by definition off,  equal to unity. m, is the mean of the dis- 
tribution and coincides with the origin in the above case, because 
all distances are referred to 2. m2 is the variance and gives an indi- 
cation of the bandwidth. It is customary (16) to express m2 in terms 
of the local plate height 

(22) dm2 H,=- dz 
which is the increase of the variance per unit distance moved by 
the mean of the distribution. 

Consider now the more general equation governing the evolu- 
tion of a chromatogram which was proposed in the previous 
section: 

D and S are assumed constant. When use is made of the fact that 
lim x 3 &m anfax. = 0 in the integration by parts, it can be proved 
that a ' y  (x - f). - dx = (-l)mm! 6," axrn (24) 
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456 K. D E  CLERK, T. W. SMUTS, AND V. PRETORIUS 

where a,,, is the Kronecker delta. By operating on Eq. (23)  with the 

operator 1:; (x - f), dx (n = 0, 1 , 2 , 3 )  and by using Eq. (24) we find 

Equation (25)  expresses the conservation of mass, while Eq. (26)  
shows that the distribution mean moves with a velocity ii, i.e., 
equal to the negative of the coefficient of dfldx in Eq. (23). From 
Eqs. (26) ,  (27) ,  and (22)  it follows that the local plate height is given 
by 

Hz=---- dm, dt - 2 0  
dt dz ii (29)  

Since m3 is a measure of the skewness of the peak, S is a measure 
of the rate of increase in this skewness. This result is a generaliza- 
tion of previous theories which predict a tendency toward a 
gaussian distribution. 

For the purpose of chromatography, the third-order partial dif- 
ferential equation [Eq. (23) ]  may therefore be replaced by the 
simple set of ordinary first-order differential equations (25)  to (28) .  
These require the specification only of the moments of the initial 
distribution for their complete solution. 

The theory outlined above is strictly valid only when a, D ,  and 
S are constant. It may, however, be easily extended (17) to the case 
where these parameters depend on x, provided their variation 
within the peak width is negligible compared to the variation along 
the length 1 of the column. 

When D and S are dependent on f (nonlinear chromatography) 
r+m 

the operator J ' (x - 2). dx is not able to extract the desired 
-m 

chromatographic information directly from Eq. (23) .  It may ther 
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STOCHASTIC APPROACH TO CHROMATOGRAPHIC THEORY 457 

become necessary first to solve this equation for f before operating 
on it with the moment generator. Alternatively, it might be possible 
to construct an operator which will transform Eq. (23) into a form 
from which the time dependence of the moments may be found 
more easily. 

CONCLUSIONS 

The general equation describing the temporal change of the 
solute distribution in a chromatographic column is the special 
form, Eq. (3) ,  of the master equation. When the transition prob- 
abilities can be written in terms only of x andf,  this equation re- 
duces to a partial differential equation of the form 

af a2f a3f a4f 
a t  ax ax2 ax" ax 
- _  af --c - + D - - S - + T ,  

where the coefficients ii, D, S, and T ,  etc., are functions of x, f, and 
other column parameters. These coefficients may all be calculated 
in terms of transition probabilities, which, in turn, are found by 
averaging the appropriate chromatographic ensemble. 

The order to which Eq. (30) is considered significant is governed 
by the amount of information required about the peak character- 
istics. For instance, if retention times and bandwidths are the only 
factors in which one is interested, third- and higher-order terms 
may be neglected. However, if peak asymmetry is of importance, 
it may become necessary to include third-order terms. This will, 
however, depend on the relative magnitudes of the contributions 
of S, the concentration dependence of D, and the influence of the 
initial distribution to the peak skewness. 
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